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A bst rac t

An ima qing system that consists of a laser scanning

a surface and a he terodyne receiver that measures the back -

scattered field is considered. When the scanned surface Is

rou gh compared to the wavelength of the incident laser beam

the coherent  properties of the laser beam are destroyed in

the backsca t te red  field. This Incoherence Induces a no ise

in the resul t ing image that is commonly referred to as

“speck le ” .

The rough surface is mbdeled crudely by multiplying

the i n c i d e n t  s c a l a r  fi e ld by a re flec tance term an d a ran d om

phase term. The re f l ec tance  is the “s igna l ”  that is desired

to be measured. The two d imensional  fields are propagated

from one plane to another through the Huygens-Fresnel inte-

gral. The random p hase is considered to be a zero mean

sta tionary Gaussian random process whose variance and cor-

relat ion distance are a function of the rough surface. It

is shown tha t the correlation function of the field is very

narrow when the field is reflected from surfaces that are

rou gh compared to the optical wavelength. A complex cur-

rent representat ion Is used to show tha t the mean of the

output from the optical detector is zero. However , the

s ta t i s t ics of the amplitude and amplitude squared of the

c urrent do result In a mean “ s ignal”  and they are developed

In a manner simi lar to the well known narrowband noise

model. Second moment models for detec tion of the amplitude

V
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of the curren t and for detection of the amplitude squared

of the curren t are presented. The mean “signal” and co—

v a r i a n c e  “no ise ” funct ions are related to the field corre-

la ti on func ti on , the r e f l e c t a n c e  of t he sur face , and the

system parameters. The system parameters include the

scann ing velocity , the Gaussian laser beam spot size , the

receiver aperture s i ze , the opt ical  wave len gth , and the

observa tion distance. The noise models describe both the

avera ge speckle cell size In the image and the contrast

in  the image  tha t i s d ue to th e spec k le  no i se .  I t i s

shown th a t the form o f the mo del i s th e same for bo th th e

far  fi el d an d near fi el d cas es.  The mode ls  deve l oped I n

this thesis provide a basis for determining the “op t imum ”

• signa l processing method for producing the “bes t” image

qual i ty .

Vi
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A SPECKLE NOISE MODEL FOR OPTICAL

HETERODYNE LINE-SCAIt IMAGER Y

I, introduct ion

Th e object iv e o f th is thes is Is to a na lyze an opt ica l

heterodyne l ine-scan imaging system for the case of rough

su rface re f lec t ion.  Fig . 1 is an i l l us t ra t i on  of the system

wi th an accompanying simple block diagram. The models

developed in this thes is  wi l l  include all but the f inal two

bl ocks shown in FIg. 1. In the system a laser I l luminator

scans the object sur face in a pattern that w i l l  result  in

comp lete “once only ” co verage of a cer ta in  area.  The

scann ing system a lso  re f lec ts  the f ie ld backsca t te red  from

each i l luminated spot onto an op t ica l  heterod yne de tec to r  as

t he beam Is scanned over the su r face.  The backsca t te red

f ield is a function of the re f lec t i v i t y  of the ob jec t ’ s

sur face therefore , an image of the su r face can be obtained

from the detected f ield, If the ob jec t ’ s sur face is opti-

cally smooth then specular reflection will occur and the

field will not be reflected directly back to the detector

except when the beam Is normally incid ent on the object sur-

face. However most surfaces are rough with respect to

optic al wavelengths so that a portion of the f ie ld is con-

stantly backscattered to the detector. While this rough

surface provides the energy needed for detection It also

distorts the reflected wave and the resulting image because

the exact form of the surface roughness is “a priori”

1
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Fig. 1. The Optical Heterodyne Line-scan Imaging System2



unknown and cons tan t l y  chang ing  as the beam Is moved to

d i f fe rent  a reas .  Th is  image d i s to r t i on  is commonly ca l l ed

“spe c k l e ” .

In this thesis all optical fields will be considered

monoc hromatic or quas Imonoc hromat ic and will be mathemati-

cally propagated from one point to another by using the

Huygen s-Fresnel integral. The rough surface will be modeled

using statistics and the optical detector output current

wi l l be based on known detector models. The resulting

statistics of the detector output current will be used In V

modeling two methods of signal detection. •The statistics

of the final detected signal will be a function of the

system parameters such as the laser beam spot size , the

- scanning velocity , the detector aperture size , and the opti-

cal local oscillator field. The effect of the parameters on

the r e f l e c t i v i ty  “ s i gna l ”  and the speck le  “no i se ” w i l l  be

d iscussed w i th in  the con tex t  of each model .

First the background necessary  for development  of the

system model w i l l  be presented.  Then the system model w i l l

be developed and finally the two types of signal detection

models  w i l l  be presen ted a n d d i scusse d . - V

3
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II BACKGR~JUND THEORY

Before the system model can be deve loped It Is

necessa ry to e s t a b l i s h  a background in severa l areas. In

order of d i s c u s s i o n  th es~ areas are : the phenomeno n of

“ speck le ,” the forms of the Fluygens -Fre snel integ ral, the

use of statistics in modeling, and the process of detection.

Spe c k l e

When th e ima ge of an ob jec t i s p ro d uced ei ther throu g h

d i rec t de tec t ion or he terodyne d e te c ti on , a random inter-

ference pa ttern also results which breaks up and distorts

the desired image. This random interference pattern has

been nam ed “s p ec k l e ” and is the result of the roughness of

most object surfaces compared to the wavelength of the inci-

dent radiation. Of course , the radiation must be coherent

to observe an in terference pattern. The most obvious example

of speckle is the direct observation of the pattern produced

at a rough surface that is being illuminated by a visible

laser. This phenomenon was firs t noted in the early 1960’ s

by Oliver (Ref 1:220) and by Rigden and Gordon (Ref 2:2367..

2368). The use of the term “ s p e c k l e ” has grown to Include

any random diffraction pattern which disrup ts the coher ent

proper ties of some form of radiation. Speckle occurs in

.many di fferent circumstances, Including rough surface scat-

tering, atmospheric transmission, and holography. Much

information covering the different areas of the subject is

now ava ilable inc luding a complete Journal of the Optical

4
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Society of America volum e (Ref 3) and a book edi ted by Dainty

(Re f 4 ) .  D~ lnty a l so  inc ludes a good Introduct ion that

briefly covers the history of speckle related phenomena.

Also the theory of the scattering of electroma gnetic waves

from rough surfaces is exce llently described In a book by

Beckman (Ref 5 ) .  Goodman has spec ia l i zed  much of this infor-

mat ion for the case of op tical intensity rad Iation (Ref 4~

Chap ter 2, 16:1688-1700), The major concern In this thesis ,

however , w il l be for the case of the direct measurement of

optical fiel ds.

V Huygens -Fresne l Inte gral

The real sca lar  optical field , u(F ,t), is in general a

funct ion o f t ime , t, and space , F , where F Is a vec tor  w i th

Car tesion components (x,y,z). A temporally modulate d field

loca ted about frequency, f0, can be written as

u (F,t) A (F ,t)cos l2rl f0t + q (F ,t)]

Re (A(F, t)expE-j4 (F ,t )lexp l- j2Jl f0t]}

RetU(F ,t)exp [-j2lT f0t]} (1)

where ReC ’ } is the real operator and U (F ,t) Is the complex

envelope of the complex represen tation of u(F ,t). The tem-

poral Fourier transform of u(F ,t) ts -

F
~
1u(F ,t)J 

~
.F
~
IU(F ,t)e

~~
2
~~

’
ot]

• 
+~~~~~~j U *( F ,t ) e~~21T f 0t

1 (2)

where FtIg (t)] ~~fg(t)exp I_ j2nf t]dt and the asterisk , (*),

5
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represents the con jugation proce ss. From a graphical repre-

sentation of Eq. (2), shown in Fig. 2, it can be seen tha t

the t r a n s f o r m s of ii(F ,t) and U*(F,t) are centered at the

mi nus and p l us f requenc ies  o f f0 respec t i ve l y .  If u( F , t )

IFt [u(F,t )] I 
-

-Fig. 2. The Magnitude of Ft[u(F ,t)] fl

is unmodula ted the complex envelope equals IJ(F) and the

Fourier transform becomes two Dirac delta functions that

are loca ted only at frequencies plus and minus f0. This

field is then called monochroma tic because of the one

frequency component. If u(F ,t) is modu lated , i.e., time

varying ampli tude or phase as represented in Fig. 2, then

the field is called quas imonochromatic provided the band-

width , B , of Ft [U(F ,t)] Is much less than f0, i.e. , B<<f 0.

Thus for either monochromatic or quasimonochromatic fields

the complex envelope of u(F ,t) can be used to represent the

field and the real field can be obtained through Eq. (1).

Therefore , throughou t most of this thesis , the com p lex en~
velope will be used and the expont~ nt ial optical time func-

tion suppressed. In addi tion , the field is often described

V 6
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at a particular z plane so that the field varies only in

x and y. Thus , the unmodulated optical time varying field

at a z plane can be descr ibed through the complex envelope ,

LJ(x ,y).

As shown by Goodman (Ref 7:58), the complex envelope of

a monochroma tic field at a point in one plane can be

expressed in terms of the complex envelope of a field at

ano ther plane through the following Huygens -Fresne l integral

equa tion:

U(x ,y) ~ ~~‘ exp [jkr01 ]cos(vLF01 )U(ct ,8)dad8 (3)
,~

The vector F01 is shown in Fig. 3, k i s the ma gn it ude of

the propagation vector which is equal to 2fl/X , A i s the

opt ical wavelength , an d cos (FI ,F~11) is the cosine of the

angle between and the normal to the ct ,B p lane.  Eq. (3)

can be simplified through several approximations. If the

angle between ~ and is limi ted to less than 18~ then

the cos (ñ ,F,~1 ) is approximately equal to one. The inte-

gra l over the aper ture , ~~, can be rep laced by an in tegral

of infinite limits if the finite extent of the field ,

U(a,8), due the aperture i s included i n the ma thematical

descrip tion of Ii(cz ,~ ). In addi tion , if the distance z is

much grea ter than the maximum linear distance from the z

-axis , then r01 In the denominator can be approximated by z.

The above restric tions have put the integral in a simpler

form and are discusse d In grea ter detail by Goodman
,7
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a U y

• x

z

Aperture

r01 — z2 + (x-ct)2 + (y-~)
2

Fig. 3. Diffraction Geometry (Ref 7: 57)

(Ref 7:58). The integral now becomes:

U(x,y) — ft U (ct,~ )exp [Jkr 01)dc*da (4)

The Inte gral Is still not very useful becau se of the

term In the exponen tia l . But , because the expon ential Is

very sens itive to small changes in the value of exponent,

extra care must be used In making any approximat ions in the

• . 8
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exponen tial. The two approxima tions commonly made at this

point are the Fresnel and Fraunhofer approximati ons.

Fresnel A pproximation. The Fresnel approximation is

made by writing r01 from Fig. 1 as:

r01 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (5)

Si nc e the absolu te value of the d i fference terms di v id ed by

z -Is less than one , the binomial exp ansion to the square

roo t can now be used to wr i te :

rOi = z(1+~-(~j-~)
2 + 1(.~1)2 - ~(a~.) ~ + ‘ ‘]  (6)

Now i f th e max i mum l i near d is tance is such tha t

z3 >> 
~~~ 

[(c~-x)
2 + ‘

~
2
~~ax 

(7)

then the higher order terms beyond the squared terms may

be neglected and Eq. (4) reduces to the Fresnel approxima-

tion g i ven as:

U (x ,y) expLikz ] 
~

+ (~ -y) 2 ])dc id~ (8)

or
• exp [jkz]exp (~~-(x

2+y2) 
~ k 2 2U(x ,y) jAz 

Z 
~~ u (a,Bflexp ~-1(ct +~ 

) ]

exp [~~~~ (xa+yB))d~d~ 
- 

(9)

Fraunhofer Approximation. The Fraunhofér approximation

Is used when:

9



>, k(ct~+8~j~ (10)
max

If Eq. (10) holds , then the squared phase terms may be neg-

lec ted in the integral of Eq. (9) and the Fraunhofer

approx imation is written as:

exp[jkz 1exp[~-~-(x
2+y2 )] 

-U ( x ,y) = Z ff U ( c z ,~~)
jxz -~~~

exp(~~~~ (xct+ y8)]dczd~ (11)

The integral in Eq. (11) can now be recognized as the two

d imensional Fourier transform of U(ct,~~) evalu ted at the

spatial frequencies 
~x 

= and fy =

One-D imensional Huygens-Fresne l Integral. In many

cases th e ef fec t o f th e bas i c parame ters i n a sys tem can be

ade q ua tel y described in simpler terms through the use of the

one-d imensional Huygens-Fresnel intergral. In this case the

fiel d at the z plane Is variable in only one lateral direc-

tlon. The integral is now written as (Ref 22:316):

exp [J (kz4)Jexp[jk~~-] ~ 2
U ( x )  = 

1/2 
‘ 

~~ U (a)exp[~~~ ]( A Z )  Z

expL-j2fl~-~]dci • (12)

Up until this -point it has been implied that the

Huygens -Fresne l In tegral can be used only for mohochromati c

waves. However , the integra l may be used for quas imonochro-

matic waves prov ided ~~
- >~~ ‘“ Ol ’ m ax where c is the speed of

ligh t (Ref 7:108). B Is the bandwidth of the complex en-

velope as shown in Fig. 2.

10
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Propagation and Reflection of a Laser Beam. When

Eq. (11) is use d to propagate the outp ut from a laser

source the resul t is a Gaussian spherical wave (Ref 8:306)

of the f o l l o w i n g form

2 2
U(a,8) = A exp[jkz]exp [j~~ (c12+82)]exp[a +8 ( 1 3 )

Z w ( z )
where A is an am plitude term . he beam spot size at the z

plane , w(z), is the radia , distance where the total beam

ampl i tud e i s e~~ times the center amplitude. If it is now

desired to reflect this wave directly back from normal

incidence on a smooth surface using the same coordinate

system , then th e exponen ti al p hase terms must be conjugated.

By conjugating the exp (jkz] term , th e wave now p ro p a g a tes

In the oposite direction , and by conjugating the exp [j~-~-

term , the spherical phase fronts are inverted.

The inversion of the wavefront can be seen by simply drawing

rays and then reconstructing the wavefront. More formally

the spherical wave can be broken up into an infinite sum of

plane waves of different angles of incidence. The surface

boundar y conditions can be applied to each plane wave and

the resul ting sum then used to reform the reflected spheri-

cal wave. In add ition , since a wave is seldom totally

ref lec te d , a r e f l e c t i on coef fi c i en t , a (ct,8), that i s a

real function of the particular surface must be multiplied

times the Incident field to complete the process of reflec-

t Ion , (Ref 9:74). In general the reflection coefficien t

depends on the incident angle and polar ization of the

11
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Incident field and on the index of refraction of the surface.

The r e f l ec te~J field is modeled as

Ur(a~
B ) = a (ct , 8 ) U (a ,8) (14)

where r deno tes the reflected wave and I denotes the inci-

dent wave

Statistics in Modeling

In man y instances the exact nature of the desired sig-

nal fi e l d is  unknown e i t her b ecause  the si gnal  i tsel f i s

unknown or because a known €ignal has been distorted by

some type of unknown interference , or both. In these cases

it is useful to model the system through the use of

statistics. 
V

In stat istics a random variable is an unknown function ,

x , whose poss ible values are best described by a probabil-

ity density function (Ref 10:92-136). Each possible value

of x is called a sam ple point. In many cases x is also a

func t i on  of t i me , term pera ture , space , or any other index

and is then called a random process (Ref 10:298-339). Thus

a random process is a collection of random variables that

are indexed  by ano ther p arameter  so the p roba bi l ity dens ity

also becomes a function of the index. For any particular

value of the index , (x) is a random variable. For any fixed

value (sample) of a random variable Cx) Is still a func tion

of the index and is called a sample function. To describe -

the random process comple tely, all orders of the combined

12
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probabilit y densities for all possible values of the index

must be known (Ref 10:311). But , in practice this requires

more knowled ge of the random process than Is usually avail-

able. Therefore a limited statistical description of the

sys tem , c a l l e d a secon d momen t mo del , is  commonl y used .

The mean , variance , co r r e l a ti on , and covar iance function

are use d in a second moment analysis.

The mean of a random p rocess , x , is in general a func-

tion of the index , t, an d i s d eno ted as E [x t] where El ’)

is the expected value operator (Ref 10:Chapter 7). The

mean i s t he fi rst momen t of th e p rocess  and i s  o ften cal l ed

the expected value of the process or the ensemble average.

The mean crudely represents the “mos t l i ke l y ” sam ple func-

tion of the random process and is usually directly related

to the des i red s i g n a l .  The var i ance d escr ib es th e aver a ge

of the square of the fluctuations about the mean and is

defined by (Ref 10:244)

a~ ( t )  = E ((x t
_E [xt])

2] E[x~ ] - E2 Ex t] ( 1 5 )

where aga in the index , t, has been i n c l u d e d because  x i s a - 

V

random process. The var iance is usually considered -an

indication of “no i se ” i n t he system because  I t i s  a measure

of the var iation or fluctuat ions of the random process from

the desired mean term. The square root of the variance is

usuall y denoted as the standard deviati on or the rms varia-

tion from the mean .

13
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Since the process varies with the index , the mean and

variance are not sufficient information to describe how the

process is related to i tself at different values 0f the

Index. This relationship is desc ribed to some degree

through the correlation (or autocorrela tion) and covarlance

functions. The covar lance functfon Is defined as (Ref 10:

317)

C (t1,t2) = E[(x -E [x ))(X
t 

-E1x ] )
X t1 - 2

EIX t x~ 3 - E [X t ]E[x t 11 2 - 1 2

R
~

(t i,t2 ) - E I x t )EIx t ] (16)

where Rx(ti~ t2) is called the correlation function. I-f

t~=t2 then the covariance Is equal to the variance and if

the mean is zero , the covariance is equal to the correla-

tion func tion.

Because the covariance depends on the individual

values of the index , it may still require more information

than Is usually known. But , in some cases the statistics

can be considered stationary at least at the second moment

level (Ref 10:325). Under this condition the mean becomes

a constant (independent of the lndex ) and the covariance

and correlation functions depend only on the absolute

-difference in the index values , t2-t~~~t=t , This assumption

may appear inva lid for a particular random process , bu t It

only means that the process fs being described by a rather

crude but still useful set of statistic s. Under the condi-

14
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tlon of statlonari ty, Eq . (16) now becomes:

c
~
(r) R,~(t) - E2(x] 

- 

(.17)

The covariance and correlation functions of a real random

process can be shown to be even funct ion s of t with their

maximum magni tude at t=0 (Ref 10:323). Also , for a nonperi -

odic process , the correla tion function approaches the square

of the mean and the covariance approaches zero as r

approaches infinity. In many cases the effec tive non-zero

value of the covar iance occurs over just a short length of

r from the origin. This per iod of T is called the correla-

tion or coherence period (time , distance) , T~~, of the random

process. Although the exact point at which the covariance

can be considered to be zero for a particular function may

be rather arbitrary , tc roughly represen ts the distance (or

time separation) between samples of the process such that

the samples become unrelated i.e., uncorrelated. A typical

samp le funct ion w i th  s t a t i s t i c a l  parameters crudely ident-

ifIed Is shown in Fig. 4a. A sample corre lation func tion

Is shown in Fig. 4b.

Measuremen t of Optica l Signals

To retrieve the Information -from an opt ical signal ,

there must be some means of measurement. Most available

optical de tectors are square law devic es that measure the

Intensity of the Incident field , I.e. ju (x,y)~
2 (Re-f 11:1819).

However ,  homodyne and hetero dyne techniques can be used to

measure the actual field with its accompanying phase

15
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Information . While the system to be discussed In this

thesis is a heterodyne system , a brie f discuss ion of direct

detection will be given -first so that the difference in

the necessary field statistics can be related. The detectors

considere d here will be modeled as ideal , i.e., all quan tum

effects and noise terms will be neglected. -This will allow

the speckle noise term to be isolated in this thesis. The

de tector noise terms can always be added to the model If it

becomes necessary .

Direc t Detection. The ideal instantaneous output of

an op tical detector is defined as (Ref 12:91)

1( t )  = ~~~~~~~~~ P = —
~~

-
~~~ 

f i’ lu (x ,y)f 2dxd y (18)
d

where q is the charge of an electron

r~ Is the quantum efficiency o-f the detector

h is the Planck ’ s cons tan t

V f0 Is the optical frequency

is the optical power collecte d by the detector

surface

A d is the area of the detecto r surface

U
~

(x ,y) is the signal - fi eld incident on the detector.

Thus this sytem directl y measures the Intensity of the

field and is referred to as direc t detection. 
V

The mean current  is

E (i(t)1 = 
~~~~~~~~~ if E [U 5 (x ,y)U (x,y)]dxdy (19)

d

17
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where the asterisk denotes the complex conjugate of the

field. Therefore the expec ted value of the current Is re-

la ted to the expected value of the intensity of the field

or the correla tion function of the field. Similarly the

correla tion function of the current is related to a fourth

order moment of the field as shown below:

E[i(t)1(t’)) = (_9fl)2 flu Exu s cx ,y)u:cx ,y)u 5 (x ’ ,y ’)u:

(x ’ ,y’)Jdx dydx~ dy~ (20)

Heterodyne Detection. In - a heterod yne system the In-

coming signal field is added to a local oscillator field ,

IJ L O (x ,y,t), by means of a beam splitter. The local oscil-

la tor field is at an optical frequency of With

thi~ ~rrangemen t the ideal detect or output current becomes

(Re-f 13:481-487)

1( t ) = ~~~~~f f  1U 5 (x ,y , t )  + U~0(x ,y~t)I 2dxd y

= hfo A d 
{(U 5 (x ,y)t 2+2Re[U $ (x~y ) U~0(x~y)exp [_j2nf

1~ t]]

+ IU~Q (x~y)I
2}dxdy (21)

where ReL •1 is th e real operator. The first and last term s

In the integral are centered at zero frequency and àan be

.fl Itered out so that the remaini ng output is at the 1nter~
mediate frequency , 

1F’ as shown below -

1(t) ~~~ If Re {U 5 (x , y ) U Q (x .y)exp [_j2rT f1~ t]}dxdy (22)

18 
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Since the expected value and real operator are both linear

they can be Interchanged and , assum ing that the signal fiel d

-Is the only random quantit y , the expected value of the cur-

ren t is:

E[i-(t)) = .
~~
. If Re{E[U 5 (x ,y)]U 0(x~y)exp [_2jnf 1~ tJ }dxdy (23)

d
Thus for he terodyne detec tion the mean of the current Is

related to the mean of the field. This is in contrast to

the case of direct detect ion where the mean of the current

from Eq. (19) is pro portional to the correlation of the

field , i.e., E[IJ 5(x,y)U~(x,y)]. The correlation function

of the current for h;terod yne detection is:

E [i(t)i (t’)] = (-
~-~~-) E [ff f f ReiU $ (x ,y)U LO (x ,y)

Ad
expl- j211f11t J-Re {U 5(x ’ ,y ’ )U~0(x’ ,y ’ )

exp[- j2Itf1~ t’]dxd ydx ’dy ’

= (f~~)
2
Re {fiff EIU 5(x ,y)U5(x’ ,y ’)]U 0(x,y)

U~Q(x’ ,y ’)expI_j211 fJ~ (t+t’)]÷EIU 5(x,y)

U ( x ’ ,y’)JU~Q (x ,y)U~Q (x’ ,y ’)exp [~ j2TIf1~

(t-t’)Jdxdydx ’dy ’} (24)

where ident ity Re .[A]Re [B] ~ ReIAB+AB* ] has been used.

Therefore in heterodyne detectio n the correlation of the

cu rrent Is relate d to the correlat ion of the real parts of

the field and is In general non stationary .

- 

19
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The discuss ion of the background theory Is now com-

plete. The task is to now use these model s and Ideas that

have been presen ted in this section to develop a complete

system model for the heterodyne line -scan imaging system.

20
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III. THE SYSTEM MODEL

Now tha t the background theory has been discussed the

system mo del can be developed. First a phase model for the

rough surface w i ll be establ i shed , then this phase model

w ill be incorporated into the total heterodyne line -sca n

ima gery model. From the system model the mean and covar-

lance functions of the complex output current will be

determined. For simplicity the model wil l be developed in

one d i mension as ex p la i ned la ter.

The Rou g h Sur face Phase Mod el

The reflection -From a rough surface is in general a

very compl ica ted  process that i nvo l ves  the surface reflec-

tion coefficients , the surface height variations , the

macrosco pi c and m i crosco pi c an gl es of i nc i dence , and the

polarization of the incident field. Since the system dis-

cussed here involves the imaging of many different types of

surfaces with characteristics beyond the system ’ s con trol ,

and since the usable information is only in the direct back-

scattered radiation , a more simple phenomelogica l model will

be used. Th e model, which was also used in a similar direct

detection imaging problem (Ref 14:779-785), is less com-

plica ted than Beckman ’s (Ref 5:Chapter 5) but is closely

related. The model w ill be developed under- the following

condi tions: (1) sca lar fields will be used , (2) depolari-

zation effec ts, mult iple scattering, an d shadow i ng w i ll be

neglec ted , as is typically the case (Ref 5:Chapter 3 and 5,

21
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6:1689) since the effects are often small and very difficult

to describe mathematically, (3) the surface w ill be con-

sldered rough as compared to the optical wavelength as dts-

cussed in more de ta il later so that backscattered radiation

exists and to tal specula r reflection does not occur , (4)

the radius of curva ture of the surface irregularities will

be assumed large as compared to the optical wave length

(Ref 5:20), and (5) the field reflectivity will be considered

a real func tion of space with a value between zero and one

so th-a t it attenuates the Inctdent field such that the

reflec tivity is the sur face  cha rac te r i s t i c  to be measured ,

i.e. the signal.

Under the above conditions the reflection from a rough

surface will be modeled by including a random phase term in

the process of reflection from a smooth surface given by

Eq. (14) in the back ground section. The reflected wave is

then:

ur (a) = a( c*) e i0(~~ U (c*) ( 2 5 )

V 

The random phase can now be related to the surface heigh ts.

First , t h e  surface heights, h(q), w i ll be modeled as a sta-

tionary zero mean Gaussian random process. The zero mean

follows from the fact that any constant reference can be

added to the model such that the ensemble average becomes

zero. A Gaussian dis tribut ion Is commonly used to describe

a rough sur face (Ref 4 :65 , 3:1153 , 1195 , 1205 , 1212 , 1224 ,

5:80) but may break down for some po lished man made surfaces.

22 
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As will be discussed later tMs Is not a par ticularly

necessary assump tion , but tt does make the probl em easier

m athematicall y.

As can be seen from the sample function of Ftg. 5, the

total path difference between a wave reflected at h (c*) and

a wave reflected at h(o) referenced to a constant spherical

phase f ron t is

d+~~j. — h(cz)+d-i~j. - h (~)-d-~~j.-d+~~~~-2h(c&) (26)

an so the phase variation becomes :
- 

0(a) ~~(2h( a ) )  
~f 

h(c*) (27)

H

A 

_ 

V

Fig. 5 Model for Determining the Path Differences
Induced by the Rough Surface
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The mean of the phase is

- EIO(q)] 
~f 

EI t i (c~} ] 0  (28}

and the var iance of the phase is: 
-

41!a 2
(
i

i
) q2 

( ~~~ (29)

From Eq. (29) it can be seen that the rms roughness of the

surfa ce , ah, can be directly compared to the wavelength , ~~ .

When the wavelength is l a r ge compared to 
~h’ 

the m s  varia- .
- tlon of the phase Is small and there would be little pro-

blem with interference. But , as °‘h approaches the value of

X or greater , the m s  phase variations become larger than

211 radians, and destruct ive interference will result. An

example of some values of rms surface roughness is shown in

Table 1. Most exterior metal surfaces will fall in the

Table I Values of Surface Roughness

Name rins roughness ~v a ~e • p~~k to
- 

microns 
___________ - 

microns

Rough 1000 25.4 3500 88.9

Semirough 500 12.7 1750. 44.45

Medi~ n 250 6.35 875 - 22.2

Semifine 125 3.18 455 11.56

(From Ref. 15:859)
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category of rough to semirough an~ thus would also be con-

sidered rough as compared to an optt cal wavelen gth , Al so

most other nonmetalic surfaces are rough compared to metal

surfaces so they , too, would be rough compared to an opti-

cal wavelength.

Later In determining the moments of the fields -It will

be necessary to take the expected value of the random

exponen tial phase terms as follows :

- EI.e~~) (30)

E f e JI 0(
~
)0

~~
$ )u 1=E1e i~ ] (31)

and EJe JIO (c*)+O(c~
’) 1) EJe~~J (32)

The above two equations represent a form of the character-

istic function (Re-f 10:419)

E1e~~~) (33)

for the case of v=1 . For a Gau ssian random variable , x ,

the characteristic function is well known and equals (Ref

10:420): -

V 

v2~
2

•~~v) expljvElx] - - -i-] (34)

Th us , for Eqs (30), (31) and (32), v=1 and the mean Is zero

so the characteristic functio n equa ls : 
-

2
ELe J*l ~~ e-4 

-

wh ere ~~~ or y as required. The variance of 0 was

determined in Eq. (29). For a stationary zero mean

25  -
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Gauss ian random process the variance of $ is computed as

f o l l o w s :

= E[(@ (c*)-O(cz’ ) ) 2]-E 2 1 0 (ct)-O(cz’ )j

= E[02(a) +O 2(c~’)-2O (cg)O(c*’)]

2a~ - 2R 0(A ct)

= 2a~ (1-p (Act )) (36)

where 1~c~~ct-a’ and p(t~a) is the correlation function of the

phase normalized to one at ~c*=O . p (&~) i s a l s o  I d en ti c a l l y 
V

the normalized correlation function of the surface hei ght s ,

h(ct). Similarly

= 2a~ (1+p(~ cz)) (37)

The Heterodyne Detector Current Model

The rough surface model is now complete and must be

Incorporated into the system model. The output field from

the illuminating laser will be propagated to a rough sur-

face , r e f l e c ted , and propagated back to the detector by

means of the Huygens- Fresne l integral equation. The V

detector current will be determined from this - field. - Then

the statistical moments of the current w i l l  be de term i ned

and it will be shown that the system can be described in

terms of the com plex current output of the detector.

- The Real Current. The mechanics of the heterodyne line -

scan system scan the laser ra~
1 at i on across  the scene to be

26



imaged and the de tector measures the backscattered field.

The system mec hanics also keeps the detector surface and

local osc illator field aligned normal to the direction the

laser is pointing. However , the angle of incidence between

the laser field and the object surface will change as the

beam Is swept across the object. In principle the coordin -

ate rotations required to describe this scanning system

could all be included in the Huygens-Fresnel integral but

the pro blem becomes more complicated than useful. There-

fore , the sys tem w i l l  be mo de led  w it h the l a s e r , de tector ,

and assoc iated fields in a fixed coordinate system. The

— 

laser beam will be normally incident upon an object surface

whose reflectivity and random phase characteristics are

effectively moving beneath the beam in time and with veloc-

ity , V. Both the spreading of the beam spot and the changing

su r f ace  ve l oc ity th a t occur  as the b eam i s swe pt over th e

surface wil) be ignored. But, the model  w i l l  be a func ti on

of the beam width and the velocity so the above effects can

be determined simply by varying these parameters. Also, at

any instant of time , the detector output is proportional to

an average of all the reflectance values at each point with-

in the beam spot and detector field of view. Because the

laser beam is circular in sha pe, the reflectance points

covered by the width of the beam at each point in the

scanning direct ion will change slightly as the beam is moved.

But , the basic chan ge in the average reflectance is caused

27 
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by the reflectance points that en ter and leave the beam in

the scanning d irection. Thus the model will be developed in

the scann i n g d i re ct ion  o n l y , where  the  r e f l e c tance at each

point in this direction can be thought of as an average of

the reflectance over the width of the beam. The extension

of the model to both lateral dimensions is straightforward

but more ted ious.

The system geometry is shown in Fig. 6. From Eqs (12)

Laser

1f ~~,~...Detector -- I b x

I

I

V 

F,_vt _j - 

V

f//f// I / / /////// 74~// / /////////A (cz+vt)

Fig. 6 System Geometry

and (13) the one dimensional field from the laser at the ob-

ject surface is: 
- V
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exp(j(kz-~ )] 2 k 2U1(cz) = 

( A z ) 1”2 
A ex p(_ (

w~t±
-)) ]exp(j—~j-] (38)

From Eq. (25) where the reflectivity and random phase are

now pro per ti es of a mov i ng s u r f a c e , t he backsca ttered fi e ld

-Is:

O (cx-v-t ) 
*Ur(a) 

= a(c&-vt)e~ LJ j (ct ) (39)

The reflected field is now propagated back to the detector

through the Huygens -Fresne l integral of Eq. (12) but since

propagation is now in the negative z direction the phase

terms of the Huygens-Fresnel integral of Eq. (12) must also

be conjugated so that the field at the detector is
2

exp [-j(kz-~-)]exp[-jk~
—] 

k 2Ud(cL) = 

( A z )~~
2 

Z 
~ U r(~

)exp [_j_- .
~~l

exp[j2fl~-~]dcz (40)

From substituting Eqs. (38, 39, an d 40) into Eq. (22) the

detec tor output current becomes

I r(t) 
= ~~~‘1~~~ Re{exp[-j2(kz-~ ) )  f f  P0( x ) a 0(ct+vt) 

2
exp [(W(Z~

)2]exP [iO (ct+vt) ]exp[-j~~-—]exp [-j~-~j-]

exp(j2II~~]U~Ø (x)ex p[_i2rt f1~ t]dxdcL} - (41)

where P D(x) is the limiting detector aperture function. A

simp licat ion to Eq. (41) can be made by realizing that

PD(x) can represent a lens aperture and transfer function

29



or just the detector aperture size. If the local oscil-

la tor f i e l d  •is a plane wave the x integral i1. the above

equation yields the Fresne l diffraction pattern of P0(x).

However , this can be simplified by realizing that in most

cases P D(x) is narrow enough to satisfy the Fraunhofer type

approximation given by Eq. (10). If this is not the case the
k 2

exp [_j— ~j-] phase term can still be negated either by a con-

juga te l e n s  t r ans fer func ti on ( c o n v e r g i n g l e n s )  or by an

identical phase term from the local oscillat or field. In
2

any case IJ LO ( x ) , exp[p~—~j-Y and any phase term in PD ( x )

can be a l l  com bi ne d to e q u a l  one , so that PD(x) is now just

the limiting aperture size. The x integral is now the

spat i al Four i er tr ans form o f P D ( x )  eva l ua ted a t =

The tr a n s f o r m of P0(x) is denoted as:

Fx [P D(x)]I 
= 

= P~~ ( a ) (42)

Equa tion (41) now reduces to

i r ( t ) = BR~(exp [_j2 (kz_ ~ )]dxp [_j2IT fJ~ t] f h(a)

2
exp [jO (ci+vt)] a(c~+v t)exp [-j-~~—]dc~} (43)

- 2qr)A

0
2

and h(a) = PDF (a)exP (_ (w (~)) ~ - 
(4 4 )

h(cz) will be referred to as the system function and repre- -

sen ts the combined result of the beam spot size and the

detec tor field of view.
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The Com plex Current. As was seen in Eqs. (23) and (24)

the momen ts -of the current could be obta ined by tak~1ng the

real par t of the moments of the complex current. Thus , the

momen ts of the compl ex current will now be dete rmined. In

determining t.ase mome nts the phase terms tn front of the

integral in Eq . (43) can be dropped. It will be shown

la ter that these phase terms are Indeed unrelated to the

pro blem solution. Thus the useful complex current is de-

f i n e d as : 
V

1(t )  = B I h (~~) a (~+vt )expIjO(a+vt )]exp [-j~~~ ]d~ (4 5 )

Since the rough surface phase term is the only random

term in Eq. (45) the mean of the current using Eq. (35) is

2
E1i(t)] = B exp [~~ ~~~~~ - I fh(ct)a(c~+v t)exp I-j~-~----]dc~ (46)

wher e exp I ’~ 
-~~~~~~ ) is the value of the characteristic func-

tion from Eq. (35). The va lue ~f the characteristic func-

tion for a surface with 
~h 

> A in Eq. (29) is 5x10~
’35 or

less. For typical values of A . 1 , r~= l-, and f~=c 3x108

Eq. (46) becomes (5x10 35) (1.6x105) (Lfz) where L is the

value of the Integral in Eq . (46). Since h(c4), a(c~+vt) and

exp (~~~~ ] all are terms with values less than one , L is
equal to the beam width or less and thus the mean current

is effectively equal to zero ,
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W it h a ze ro  mean , th e cova r i ance  of t he c u r r e n t equ a l s

the correlation of the current. From Eq (24) the correla-

tion involves the moments: E[i(t)i(t ’)] and E[1 (t)i*(t’)].

Using Eq. (45) the first moment is:

E(i(t)i(t ’)] = B2 If h (ct)h(a’)a(c~-v t)a(cz’ -vt ’)E [exp{j(O

(a-v t)+O (a ’ -vt ’)]}Jexp [-j~ (a
2+ct ’2 )]

dada ’ (47)

From E q s. ( 33 , 34, 35 , and 37) it is seen that the above

expected value term is another characteristic functio n and

is equal to:

= exp [-c~ (1+ p(E~c~+vi~t))] (48)

where (ct-vt)-(c~’-v t’)~~ ci-v~ t . T h e norm a l i zed covar i ance

function of the phase , p (~ c~+v~t), var i es be tween one an d

zero so that Eqs. (47) and (48) equal zero under the same con-

di ti ons as for th e zero  mea n c u r r e n t of E q . ( 46) .  T he

ot her momen t i s:

E [i(t)1*(t’)] = B2 !~ h(ct)h(ct’)a(a+v t)a(ct ’+vt’)E(exp{j (e

(~ +vt)-e(a ’+vt’)]}]exp (-j~ (ct2-a ’2)) 
-

dada ’ 
V 

(49)

From Eqs. (35) and (36) the above characteristic function -Is

equa l  to: 
-
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~ e x p L - q ~ (1~ p ( A a~y A t ) ) J  (50)

This func tion has a value of one for ~a+vAt equal to zero

and decreases to exp(-~~ ) as Ac*+vAt approaches In finity.

It can now be seen that the exp[-j2(kz-~-)J phase term of

Eq. (44) is cancelled because of the conjugat ion of the

current In Eq. (49). it also ob v iously has no effect on

the moments that equal zero.

I t  is  n e c e s s a r y to de te r m i n e  a f u n c ti on to des c ri be

the n o r m a l i z ed c o v a r l a n c e f u n c t i o n , p(A ct), with t~t set

equ al to zero for now. Beckman (Ref 13:81) suggests a

Gaussian func tion of the form

p(Ac *) exp 1- (~~--) 2 I (51)

where Is the correlation distance defined at

For op t i c a l l y  rough  s u r f a c e s  Goo dman ( R e f  6 : 1698 ) p o i n ts ou t

that is generally less than 0.1 mm. Kurtz (Ref 16:984)

has shown that when of Eq. (.29) Is equal to five or

greater the correlation distance of the field at the

poin t is then less than the correlat ion distance of the

rough surface by a factor of 1/ cia. Since it has been assumed

that of Eq. (29) is greater -than a wavelength , then

wi ll be greater than five and the correlation distance of

the field through Eq. (50) w ill be less than P~~~~~i~-~~~ .02mm .

Equa tion (50) will now be calle d the field correlat ion pulse

funct ion and denoted as P&
(A
~
) wher e t represents the field

correlation distance. P&(Aa) is plotted in FIg. 7 as a

33

-~~~~~~~~~~~ ---—-— ~V-



-------~~~- - -~~~- - - - --

P(àct) .5 ‘ _A£ -‘ ‘ \~~
_. =!

.4~~~ \ \
Ch 4

.3 
\~~~~

-ah=~ 
-

.2
\\ 

V

. 

.

~~ 

.~~ .7’ i 

-

.~~ 1.~~~~

FIg. 7 Plot of Pt(~
cI) 

-

34

-

~

-- --- V--- 

- 

----
~~ _ _ _—

~~~~~~~~~~

- - - - — -



~~~~~~~~ -~~~~~~~~~~~~~--~~~
- - - - --~~-

I
func tion of for several values of 

~h’ 
The plo ts clearly

show that the fiel d correlation distance is l2s5 than the

surface correla tion distance for the case of a rough surface

and a Gaussia n surface correl ation function , However , th i s
resul t is not strongly dependent on the shape of P(Ac*). Eq.

(50) shows that any narrow surface correlation function will

cause t he f i e ld corre la ti on d is tance , 1 , to be very small

whenever Ch > ~~ •

It can be seen by Fig , 8 that ct2-cx ’2 is greatest when

a—c t’ is at~ its max imum value , a-a ’ is now limi ted by the

FIg. 8 Comparison of c*2-ct’2 to ct-a’

field correlation distance , ~~, and ct and a ’ maximum Is deter-

mine d by the beam spot size or the transform of the detector

aper ture , w h ic hever Is  l ess , through the terms; h (c*1 and

h(a’). By using the beam spot size w(z) as the iimittng

term In h(ct)
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (52)

Now the phase term , exp [j.k.,~~ ~~~~~~ can be approxi-

mated by one if: -

- 
z 

~~~~ 
k(a2i

~c*
’2)1 ,nax kw(z)L (53)

For a beam divergences , of less than three m ill jra-

dians Eq. (53) will hold. Typica lly beam divergence is

about 1 mi ll iradian , so the approximation given by Eq. (53)

appears reasonable. Equation (49) now becomes -

ELi(t)i*(t I)j = B2 ft h(a)h(a’)a(ct+vt)a(a+vt)PL (&
~
+vAt )

- dad a’ (54)

Equation (54) is identica l to the far field case because

the quadra tic terms no longer affect the resu lt. At t t ’

Eq. (54) is th e variance of the complex current. The cor-

relation function of Eq. (54) is nons tationary because of

the reflectance terms , so the correlation distance is diffi-

cult to define . But , an indication of the change in the

correlation function as At is increased and can be seen by -

writin g Eq. (54) as -

ELl (t)i*(tI)1 B2 I h (a)a(a+vt}jh (a)a(a+vtI)*p~

(a+vAtfldcz (55}

where- * denotes the convo lut ion process. 
-

A graphi cal picture of Eq. (55) Is shown tn FIg , 9. The

maxim um width L of h(ci)a(cs+vt) and h(cz)a(ct+vt ’) Is determined

36 
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_

h(a)a(a+vt)

Fig. 9 Graphica l Determination of the Complex Current
V Correla tion Di stance

by the beam spot size or the Fourier transform of the de tec-

tor aperture , whiche ver is less, From Eq. (55) and the 
-

f i g u r e , the product of h(ct)a(a+yt).V ttmes the convolution pro-

cess Is zero once vAt+R. is greater than 1, Because the

function is nonstationar y , this represents a maximum cor-

relation distance and since & ~~ L the correlation distance

Is defined as: -

• v~t L (56)

The above result Is rather plea sing since ft would seem

natural that the output woul d become uncorrel -ated once all

of the original scattering areas passed out of the system.

- 
. 

-
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From Eq. (56) the correlation time Is

At (~57)

and the noise bandwid th is approximately:

(58)

The results of Eqs. (57) and (58) are similar to those for

the case of fil tered “white ” noise where the correlation

time is approxima tely equal to the response time of the

fil ter and the noise bandwidth is equal to the inverse of

the filter response time . However , If the reflectance

varies much within the correlation distance given by Eq.

(56), then the correlation function will be modulate d by

the reflec tance and the actual correlation distance and time

may become less than that given by the above equations. The

results presented so far have been based on the commonly

used assumption that the surface , and , thus  the p h a s e , is a

Gaussian random process. This assumption has made the pro-

blem mathematically tractible but is not particularly

necessary . It has been shown that the charac teristic func-

tion of several distributions Is very small when °h is on

the order of a wavelength or greater (Ref 14:781). Thus ,

the mean of the complex current can still be considered

equal to zero,, Also, the shape of P~ (Act ) dete rmine d as a

result of the Gaussian assumpt ion is no t criti cal so long 
-

as th e corre la t ion d is tance is s t i l l  s m a l l .  Th i s  s m a l l
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field correlatio n distance is a result of the reflection of

a wave from a rough surface , The rough surface by defini-

tion is charac terized by a short correlation distance. Thus

the results presented so far appear to apply to any realIs-

tic na tural rough surface.

The Si gnal Detection Models V

Since it has been shown from Eq. (46) that the mean of

the complex current is zero , it follows that the means of

the real and imaginary parts of the current are also zero.

Therefore , the mean of the heterodyne detector output cur-

rent given by Eq. (43) Is zero . This does not imply that

the mean of the ampli tude of the current is zero. The

ampli tude , ACt), can be ident ified by wri ting the complex

current as the sum of the real and imaginary parts of the

curren t as follows :

- 1( t )  = Ir+JI j=A(t)cosO (t)+JA(t)sinO(t) (59)

or by wr it ing it in polar from as:

1(t) A ( t ) e io( t)  - 

(60) -

The value of the amplitude can be phy sically determined from

the detector output current by either coherent signal detec-

tion or envelope detection methods , and the ampli tude

squared , A 2, can be determined by square law detection

methods.
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The Quadrature Model. The statistical models for de-

tection of A and A 2 can be related to the heterodyne detec-

tor output current by first -looking at the well known

quadrature model (Ref 17:238). As can be seen from F ig.

10, one quadra ture output is the real part of the complex

current and the other Is the imaginary part of the complex

current. The statistics of the quadrature outputs can be

A (t )cos4 (t )

(t)cos(2nfi~
t+
~
(t)) cos(2nfjFt)

~ 
sin(2nf1~t)

Hete~~dyne 

~~~~~~~~~~~~1ter 

A (t)sin~(t)

Fig. 10 The Quadrature Model

determined as follows. Beckman has shown , by using the

classical random walk problem and the Cen tral Limit Theorem

that the real and imaginary parts of the scattered field are

joint Gaussian random variables - (Ref 5:124). From this re-

suit It Is straightf orwarded to show that the quadrature 
V

outpu ts are Gaussian random processes (Ref 10:504-509).

The results of Eq. (47) can be used to show that the

covariance of I~. and I ,~ are equal as follows:

40
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Eli (t)i (t’)] = E[I r(t)I (t’ )- i~ (t)1 1 (t’ )+J{I r(t)I i ( t ’ )

+ I~ (t ’  ) 1 1 ( t ) } ] = o  (6 1)

which implies that for all t, t

EU r ( t ) I r(t’ ) 1 E[1 1 (-t)1 1 (t’ )j (62)

and

E l I r ( t ) I i (t’)]=~
E [Ir(t’)I i (t)] (63)

The terms of Eqs. (62) and (63) can be related to the covar-

lance of the complex current as follows:

E[i(t)i*(t’ ) ]  = E[I r ( t ) I r(t’ ~~~ 
(-t)I

~ 
(t’ )+JCI r ( t ) I j C t ’)—

It,(t’ )1 1 (t)}]

= 2E[I (t)i (t’ )]+2jE[I r ( t ) I i ( t ’  ) ]  ( 64 )

Since all the terms in  th e exp re s s i on for th e cova r i ance of

the complex current given by Eq. (54) are real , the cross

correla tion of ‘r and I .~ in Eq. (64) is zero and Eq. (64)

becomes 
- 

: 1

E (i (t)I*(ts ) ]=2E[I r ( t ) I r (t’ ) ] - 
(65)

or

- 
E[I r ( t ) I r(t’) =~~.E(i(t)i*(t’)]

= —4~
- k0(t,t’) (66)
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where k0(t,t)~ 1. From Eq. (63k It can be seen that 1r and

are identically distr ibut ed random processes . In par ti-

cular, at t=t’ the variances of the quadratures are equal

from Eq. (63), and they are equal to one half the var iance

of the complex current as sh own by Eq . (66). The results

of Eqs. (64) and (65) have shown that t r and are uncor-

related random processes , and because they are Gaussian ,

they are also statistically independent. Thus at this

point it has been shown that the quadrature outputs are zero

mean , statistically independent , identically distributed V

Gaussian random processes. Al so , the distr Ibutio n of

these random -processes has been related to the complex

current by Eqs. (65) and (66).

Back ground Theory for Detection of A and A 2. The above

model is now equivalent to the ,.ell known narrowband noise

model (Ref 18:399-403). The amplitude squared of the current

can be obtained from the quadrat ure model by squarin g each

quadrature output and add ing togethe r the resb its. The

square root of this output is then the amplitude. This

model is shown in Fig. 11. The first order , i. e. single

sampl e, probability density of the ampli tude is the Rayleigh

pro bability density whic h is a well known transformation

from the Gaussian probability density of the quadr atures.
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A(t)cose(t) 1~~~1(.)

. A~(t) ~~1/2 A(t)

A(t)sine(t) (.)2 -

Fig. 11 Determination of A and A2 from the Quadrature
Outputs -

The k thl moment of the amplitude from the Rayleigh den-

sity Is defined as -

- 

EIA k) (2a 2 ) k~’2 r ( k 
+ 1)

(~2)k/2 r(~
. + 1) (67)

where r(.) represent the Gamma funct ion. These Rayleigh

mom ents have been previously suggested for a heterodyne

system but the details of the model were not presented

(Ref 19:648-649).

A typi cal performance measure for a system is the sig-
- 

na l to nois e ra tio , SNR. The SNR is defined as the ratio

V 
- of the signal power to the nois e power , or , In  statistical 

-

terms , it is the square of the mean divided by the variance.
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A SNR of less than one imp l ies that the signal is dominated

by the noise. A check of the SNRs for the two detection

processes can eas ily be made using Eq. (67) as follows.

flcy~
- E2[A(t)] - _ _ _ _ _ _ _ _  - 11 -

- SNR A - 

2 
- 

2 - - 3.66 (63)
CA(t) 2c 2 - lk

~r V

and
- 4

SNR 2 = E2[A(t)) 
= 

4
~r = 1 (69)

°A( t ) ar ar

As can be seen from the above two equations the SNRs are

inde pendent of all system parameters and thus are not a use—

ful performance measure for system design purposes. In fact ,

the SNR represents a time independent measure of performance ,

whereas  a more use ful  a p proac h i s to use  th e covar i ance

f u n c t ion w hi ch i n c l u d e s  the ti me depen d ence .  The covar i ance

of A is given as (Ref 18:403) 
-

CA (t,t )  = — ~- {2E[k 0(t,t’)]- [1-k~ (t,t’)]

K(k0(t,t’)] - (70)

where K and E are the elliptical integrals of -the first and

second k ind respectively. The covariance A 2 is  much  —

simpler and is (Ref 18:403) 
- 

V

CA2(t,t )  = a~k~ (t ,t’) = [C 1 (t,t’)]
2 (7 1)  j
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The Informa tion to develo p the Ind ivi dua l model s for detec-

t ion  of A and A2 is now available -through the means from

Eq. (67) and the covar l-ance functions of Eqs. (70 and (71),

The Model for Detection of A 2. The model for A 2 will

be discussed first because it is sim pler and easter to

in terpret. From Eqs. (54) and (67) the mean of A 2 can be

expressed in terms of the reflectance and system function

as follows.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(72)

As previously noted , P~~(~c~) is very narrow with respect to

changes In h(c~) and a(c*) so as an approximation It can be

represented in terms of the Dirac delta funct ion as follows.

P&(~
u) C ’~~Act) (73)

where C = I P&(&
~
)d1
~
c
~
. The system func tion , h (~ ), is  a l s o

symmetric so Eq. (69) becomes:

E [A 2(t)) = C82 f~ h(-a)h (-ct)a (~+vt)a( +vt~ )~ (c*-cz’)d c~dct ’

CB 2 I h
2(-q)a2(q+vt)dc~

- CB 2 I h
2(vt-x)a 2(x)dx (74k

Thus the mean of  A2(t) can be represented by a linear system

model of a 2(x) convolved with h2(x), Agai n by using Eq, (54),

the covarian ce 0-f A2 from Eq. (71) can be expressed tn terms

of the covarlance of ’ the complex current as follows c
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CA2(t,t )  = LB2 ft  h(a)h(&)a(c*+vt)a(ct’+vt ’)P
~
(Acz+

~
t)dctdct’]2

~ (B
2 !! h(v t_ x)h(vt ’ -x ’)a(x)a(x ’)P

~
(x-x ’)

dxdx ’]2 (75)

the double integral in the above equation is identical to

that obtained in computing the output correlation of a fil-

ter with an impu lse response h(x) driven by zero mean noise

of correlat ion Rn ( x ,x ’)=a(x)a(x ’)P&(x_x ’). The square of

the double integral in Eq. (75) sImply means that the noise

can be - represented by the prbduct of two noise processes

that are identically distributed and statistically indepen-

den t. In contrast to many other noise mode-i s the above

model is signal (i.e. a(x)) dependent. The second moment

model for square law detec tion is shown in Fig. 12.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~2 (x )

- 

fl~ (X) 
Bh (x ) 

1 

I

- 
_________ 

- 
E[n1(x) ] = E [n2(x ) ) = 0

_________  R (x ,x ’) R ( x x ’) =

fl2(X) 
fl1

a(x ) a (x ,)p;~x_ x .)

Fig. L~ ~ e Mode) tor uetection of tfle ~~~i~êi~t 
- --

Ampl itude Squared

46



-~~~~~ 
- -

~~~~~~~
- - - —

~~~~ --~~—

The speckle nois e model present ed above can be easily

mod ified to Incl ude the quantum no-ise effects that were

neglected in the detector output current given by Eq. (21).

It has been shown that the output noise stati’sttcs for a

heterod yne detector can be represented as a Gauss ian random

process (Ref 12:189). Thus these statistics are compatible

with the model presented here and the de tector noise terms

can be included simply by adding the appropriate terms to

the speckle noise representation in Eq. (75).

Several things can be noted from the model for A 2. The

output , A 2 , can be considered either a spatial signal in

the variable x or a temporal signal in the variable t , where

the relationship between the two variables is x=vt. The

temporal Fourier transform of A 2(t) using Eq. (74) is

2
FtEE [A2(t)J] -~-~ -~ - H’ (-~-)A ’ (-~-) (76)

where H’(f)=F [h2(t)l and A ’(f)=F[a2(t)J. From Eq. (76) is

can be seen that the frequency content of the output spectrum

w ill broaden as v Increases. Thus the bandwidth of the

electronics that process the output must be scaled by v to

maintain the desired frequency content a~ in the final image.

The model for E [A2(x)J is also ident ical to the result

discussed by Goodman for an incoherent imag ing sys tem (Ref

.7:109), (In two dimensions the Fourier transform of h2(x,y)

divided by the same transform evaluated at freq u e n c i e s  
~~~~~

f
7~
0 is commonly called the opti cal transfer function , OTF.)
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Thus , square law detection can be thought of as an Incoherent

Imaging system with an additive noise term given by Eq. (75).

The spatial filtering by h2 ( x )  and t h u s  the sys tem

function , h(x), can be seen by taking the spatial Fourier

t r an s form o f E [A2(x)) from Eq. (71) as follows:

F
~
(E(A 2(x)fl B2CA ’ ( f

~
)H ’ (f

~
)

B2C [AI (f x )]EH(f x ) *H ( f x)) (77)

where H( f
~

) = F
~
(h(x)]. Since the Fourier transform has an

Inverse effect on the width ‘of a f u n c ti on , the wider the

system function -In space the narrower H(fx ) becomes. As

H ( f
~
) becomes narrower so does the convolution of H(f

~
) with

i tsel f an d thus  more of the h i g h frequency content of a2( x )

is filtered out. Another way to see this filtering effect

is to look at the resolution of two point sources of reflec-

tiv ity that are separated by a distance d , i .e. a2(x)= 5(x)+

6(x-d). Then from Eq. (74):

E(A 2(t)] = B2C I h~ (v t-x)[6(x)+6 (x-d)]dx

B2Ch 2(vt)+B 2Ch 2(vt+d) - (78)

As an example , it can be as sume d tha t h 2(x) is a Gauss ian

amplitude function (consistent with a Gaussian laser beam),

and then the resolution limit can be picked as the point

where the peak of one function is at the e 1
~ point of the

other. Then from Eq. (78) it can easily be seen that d must

be the dista nce at whic h h2(x) is at it’ s e~~ point if the

two points are to be resolved. So again the wider system

48
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func tion in space the worse the resolut ion ability of the

system. This is a very intuitive result since the detector

measures an average of the reflectance points each weighted

by the value of the system function at that point. The

wider h(x) is then the more even this weighting becomes over

the width of h(x). Thus , I-f two points of equa l reflec-

tivity are to be resolved by the system , they must be

separated by a distance large enough such that the dif-

ference -In the weighting of each point is large enough to

cause a distinguishable effect In the detector output.

The effect of h(x) on the mean does not tell the com-

plete story since h(x) also effects the covariance of A 2,

je.e the fluctua tions of A 2(x). The covarlance of A2 f rom

Eq. (75) -Is nonstationary , but an indication of the correla-

tion dis tance can be determined from the correlation distance

of the complex curren t given by Eqs. (55) and (56). The

V result of squaring the complex current correlation function

is to reduce the maximum correlation distance of Eq. (56)

slightly. Still , it can be seen that the wider the system

function the longer the maximum correlation distance.

The sq uare root of the covari -anc e at t~t from Eq. (75),

I.e. the square root of the variance , represents the rms

variation from the mean due to the “noi se ” . This varia tion

can the thought of as the contrast variations in the output

Image that are due to the rough surface (speckle) noise.

Also , the correlation di stance represents the average per iod
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over which this noise process is related or does not change
every much” . -Thus , the the correlation distance can be

thought of as the average speckle cell size in the resulting

Image , and it is directly related to the width of the system

function, h(x), as was shown by Eq. (56).

The ef fec t of the  system func ti on on the no i se can

also be seen by looking at the no ise power spectral density.

The Four i er t r ans form of the ou tp u t covar i ance  w it h respe c t

to v~ t is called the power spectral density, S(f
~
) (Ref 20:

347). It represents the nois e power per spatial frequency

that passes through the system. - The total output noise

power is found by integrating S(f
~
) over all frequencies.

The power in a particular frequency band is found by simply

integrating S(f
~
) over that band of frequencies.

The covariance of A2 given by Eq. (75) is nonstationary

so strictly speaking it is not subject to Fourier analysis.

Bu t if the re flec tance  i s cons id ere d n e a r l y cons tan t ( or

slowly varying) then the power spectral densit y of A 2 is

2 x  = B2a2P
~ F (f X) IH(f~

) 2*B2a2p (f )  ~(f) 
2 (79)

where PLF (fx )=F[P&(~
x)]. Because P~ (~ x) is very narrow com-

pared to h(x), the spatial frequency spectrum of

will be wideband or “white ” compared to H(f
~
). Or, by again

approximatin g PL(~
x) as CS (Ax) as in Eq. (73), Eq. (79) can

be written as: -
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S 2(f ) 
= CB 4a4[jH( f

~
)I
~~

IH( f
~ )I 2) (80)

A x

Thus , as h(x) becomes wider , 
~

H ( f x )I
2 becomes narrower , and

the total noise power out will decrease because of the

smaller non-zero ranges over which S 
~~~~ 

w ill exist.
A 2This comple tes the analysis of the A model. It has

been shown by several approaches that the resolution of the

reflec tance information is reduced as the system function is

widened to reduce the noise power or noise flucuations.

The mo del for envelope detection will now be developed to

see how the system function affects that method of detection.

The Model for Detection of A. The model for the

measurement of the amplitude is much more difficult because

of th e express i on for the covar i ance  and the squa re  roo t

Invoived. The mean of the amplitude from Eqs. (54) and

967) is:

E[A(t)] = B—~- [ffh(a)h(c ’)a(ct+vt)a(c ’+vt)P~ (Ac *)dctdc~’]~~
’2

= -
~~
--

~~~ C~
’2[fh 2(cz)a2(c&+vt)dx] 1’

12

= 

~—4 C ’~’2 (fh 2(vt-x)a 2(x)dx] 1
~
’2 

(81)

This is the same ex p ress i on (w ithi n a cons tan t ) as the sq ua re

root of the mean of A 2 from Eq. (74). Therefore the comments

following Eqs. (76) and (77) regarding the electronics band-

width and the system function apply for the detection of

the a m p l i tude , too. - V 

V
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The covarlance of A from Eq. (70) was expressed in

terms of the elliptical integrals of K and E as follows:

CA(t,t ) =— 7 {2E[k 0(t~t’)]- [1-k~ (t ,t’)]K[k0(t ,t’)]4} (70)

The ell iptical integrals can be represen ted by the following

series (Ref 21:310)

3 . 5 e e . ( 2 i _ 1~~ 2~
2i j (82)~(x) - ~ {1 + E [~ .4.60..(2~ ) I

and

3.5...(2j.1) 2 x2~E ( x )  - -

~~~ ~
1)

1~2.4.6...(2j) 
1 -ç~ - -~-} (83)

The terms in the outer brackets of Eq. (70) can be combined

usin g x=k 0(t,t’ ) as fo l l ows :

1•3•5.••• (2j—1) 
_______________________  

x2j (1-x 2)(-~-){1+ Ell{1 - E 
~~~~~~~~~~~~ 

~2 (2j- 1J 
-

.1=1 j=1

1 • 3 . 5 • • . •
____________________ 

IV’

~~~~~~~~~~~~~~~~ ~
2ii -

1.3.5....(2j—1 
_____ ____________________  
2j .2~ 1) - 2j=Tr E i:.

i-i 
2.4.6•...(2j) ~2j-1~ ~~ 4~~~ I x 2~ (84)

Eq. (84) can now be evalua ted explicitly for the first terms

in the ser ies as fo l lows
- 1 1 2  

_ _
1 6 II, 25 

~ x
8+’•~ ••• (85)~ ~~~~~ 

~~~~~ ~ (
~~4-) X l

~~ 4O96

so the covariance of the amplitude becomes:

- 
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~~ ~~~
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(86)

a1
The f irst term , except for the constants , is the same as
the covariance of A 2 from Eq. (71), where the square of

C1 (t,t’) implied that the noi se could be modeled as the

- produc t of two independent iioise process es. In Eq. (86)

the sum of the higher order powers of C~ (t~t’) implies that

the noise can be molded as a sum of independent noise pro-

cesses. Additionally each term In the sum is itself a

product of m independent noise processes where m is equal

to the powe r of the C ( t ,-t’) term involved.

For any t’ not equal to t in Eq. (86) the term C 1 (t,t’)

is less than a~ so the terms of Eq. (86) are rapidly de-

- C1 (t.U
)

creasing with the higher powers of - 2 
- - . As the co-

a1
herence length of C1 (t

,t’) of Eq. (56) Is approached

C (t ,t ’ )
2 becomes very small and Eq. (86) can be quit e

a1
accurate ly approximate d by the firs t term. Except for the

cons tan ts this approximatio n yields the same form as the

cov a r i ance  of A2 from Eq. (75). Thus the coherence dis-

V tance can be considered to be appro ximately the same for

both methods of detecti on.
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If the power spectral density of Eq. (86) is deter-

mined in a manner similar to the case for A2 from Eq. (80),

the result would be a series of double , quadruple , and

higher order convolutions. This means that the noise

power is unlimited in frequency , although -It is reduced in

am plitude at each higher order convolution. 
- 
In fact , If

the value of the first term of Eq. (86) at t=t’ is com-

pared to the variance of A using Eq. (67), the resul t is:
2
jfl

2 8~~4—n 
( ) -

a1 -

Eq. (87) shows that 91.5% of the noise power is concentrated

in the first term of the covariance of A when the covariance

function is at it ’ s max imum value, i.e. at t=t’ . It was

also determined in the previous paragraph that the first

term was an excellen t approximation for the covariance of

- A when the covari ance is small, i.e. at the coherence time .

Thus , as a first approximation the noise covariance func-

t-Ion can be represented as: 
-

C
A
(t,t’) = 

11~~~~~ t ,t

2

fl 
(88)

1 6a 1

for all t ,t’ . This approximation is in addition to the more

accurate first term approximation that was given for the co-

herence length. Again , except for the constants , the noise

representation Is now the same as that for A2 given by Eq.
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(71). With this approx imation the model for detection of

A Is given in Fig. 13. -

A(x )

~
1(x){u1/4!y

~x 1 -K
~?:~— - I

____________ 

- 

~~ 

E[n1(x)] = E[n2(x)] 0

R ( ‘) — R ( ‘) —

j n ‘ ~~~ 
-

a(x ) a(x ’)Pt(x_x ’)

— 

Fig . 13 The Approximated Model for Detection of
the Current Ampl i tude

The system parameters now have the same effect on the

resulting Image in both the A and A 2 models although the —

final image~ ts not the same because of the square root of

the mean in the model for detection of A. In fact , the

mean of A
2 is proportional to a2, i.e., the square of the

field reflectivity , and thus is directl y related to the in—

tenstt ,>’ of the reflected field. Since the human eye also

measures intensity , the A2 image Is proportional to the

reflectivity term that peopl e are familiar with , On the

other hand , the mean of A Is proportional to the field re-
f lect iv ity, a , and the result is an image that may not be

natural to the human observer.  However , this image -Is still

a valid representat ion of the surface character is t ics .
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IV. SUMMARY

Conclusions

As was stated in the background section , there is a

great deal of information available in the literature con-

cerning speckle as it relates to imaging systems that make

intensity measurements. Very little information was avail-

able on mo deling the output of an optical heterodyne line-

scan imag ing system. The purpose of this thesis was to

develop such a model tha t i ncluded the effec ts of the

s peckle no i se , which is caused by reflection of the field

from a rou gh surface object. This rough surface , however ,

Is necessary in the scanning system to provide backscat-

tered rad iation to the detector , otherwise the detector

would only receive a return signal the few times the laser

beam was normally incident to the object surface. The met-

hods of detecting either the amplitude or amplitude squared

of the current from the heterodyne detector have been

modeled in this thesis. The amplitude of the current is

easily measured In an actual system by envelope detection

or it can be detected by more sophisticated coherent detec-

tion methods. The amplitude squared of the current can be

determined by use of common square law detectors. .

Because the detector output is the average of all of

the reflectance points within the laser beam , it was argued

that the significant changes In the detector output occurred

as a function of the scanning direction of the system. The
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reflectance at each point in the scann ing direct ion could

be considered equal to the average of the reflectance

across the width of the beam perp endicular to the scann ing

direction at that point. Thus , the system model was devel-

oped In the scanning directi -on only. The one dimensional

Huygens -Fresne l inte gral was used to propagate the laser

output to the object’ s surface and the reflected field back

to the detector. The laser and detector were modeled as

being stationary in a fixed coordinate system whi le the sur-

face char~cteristics were moved beneath the laser beam. It

was pointed out that the effects of beam spreading and

changing surface velocity , that were Ignored in this model

but which occur in the actual system , could be determined

from this model simply by varying the appropriate parameters.

In the development of the system model , the object’ s surface

H was considered to be a zero mean gaussian random process ,

but it was later argued that the results were typical of

any naturally rough surface. It was shown that the rms

roughness of the surface coul d be compared directly to the

optical wavelength and that many surfaces are rough corn-

pared to optical wav elengths. A system function was defined

which represented the combined effect of the detector field

of vi ew and the laser beam amplitu de function , Then the com-

plex current was used in determ inin g the stat istics of the

op t ica l detector ’s output and ft was shown that the mean

signal was zero when the objects surface was rough compared
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to an optical wavelength. It was also shown that the cor-

relation func tion of the reflected field was very narrow ,

on the order of tenths and hundredths of a millimeter. This

narrow correla tion function meant that the reflected field

was now spa tially coherent over just a very short distance.

This fact allowed the quadratic phase terms to be neg lected

which resulted in a model that was the same for both far

field and near field cases.

Because the mean of the detector output current was

zer o, a mehtod of detection the amplitude or amplitude

squared of the current was included. The amplitude is re-

lated to the sum of the squares of the real and imaginary

parts of the current so the quadrature model was presented.

The quadra ture outputs were shown to be identically distri-

buted , zero mean joint Gaussian random processes. Based on

this resul t, it was concluded tha t the fi rs t order dens ity

of the amplitude was Rayleigh and that the model was now

similar to the well known narrowband noise model. The sig-

nal to noise ratio for each detection method was calculated

from the moments of the Rayleigh density but in both cases

it was independent of the system parameters.

However , a secon d moment model for each detection pro-

cess , which included the system parameters , was developed .

The respec tive mean (signal) and covarianc e (noise) functions

were all expressed in terms of the previously determined co-

variance function of the complex current. The ampli tude

58



- - ----—-1___ 
~~~~~~~~~~~

squar ed signal model was shown to be identical to the lin ear

system model for an incohe rent Imaging system where the

Fourier Transform of the system function squared represents

the well known Optical Transfer Function. It was shown

that the resolution abil ity of the system degraded as the

width of system function was increase d in space. This was

intuitively pleasing since an increase in the width of the

system function causes more reflectance points to be in-

clude d in the averaging process a-n d thus the effect of each

V individual reflectance po int becomes smaller. The amplitude

signal model was developed and shown to be Identical to the

amplitude squared signal model except for -some constants

and the final square root of the output. The filtering

effects of the ~;ystem function were the same for both models.

In each model , the noise covarjance was shown to be

represented by the square of the complex current correlat ion

function and unl i ke some common noise processes it was a

function of the reflectivity signal. The màdels provided

considerable information about the speckle noise. The co-

herence length of the noise process represents the period

that floise is related and thus corresponds to the average

speckl e cell , si ze in the image. TILlS corre lation distance

was determi ned to be equal to the width of the system -func-

tion except that when the reflectiv ity var ied signifi cantly
V - over the same distance , it could become small -er. -Th e con-

trast In the image due to the speckle noise was given by

the square root of the variance and could be determined from
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the noise represen tation in the models. The models show

how the system parameters affect the signal and the speckle

noise and they provide the basis for developing signal pro-

cess ing methods that will optimize the desired image. Also ,

it was shown th at the common he tero dy ne de tec tor no i se

models could be easily added to the speckle noise models

presented here.

Recomm end a ti ons

Although the models developed in this thesis describe

the speckle effects , they do not provide a definite solution

to the problem of producing the “best” image in the pre-

sence of s pec k le no i se. It i s recommende d tha t o pti m i za ti on

techniques be applied to the models to determine what signal

~process ing could be done to provide satisfactory system per-

formance. It would be helpful to know what the expected

spatial frequency content of the reflectance is so that the

V 
refle ctance signal power spectrum could be compared to the

no i se power s pec tral dens ity . Then a m i n i mum acce pt a b le

resolution cri ter i on could be developed , and an appropriate

filter determined that would yield the desired resolution

while filtering those frequencies that reduce the image

quality . Also , this would allow comparisons to be made be-

tween the two signal detection models to determine which de-

tec tion method would yield the best performance. 0-f course

comparison of the models developed here with additional .

experimental data would serve to validate them. Finally,
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the develo pm ent of a similar model for optical direct de-

tection line -scan imag ing systems V
wou ld provi de the bas is

needed for determining which type of system should be

further developed.
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